首页 | 本学科首页   官方微博 | 高级检索  
     


Primary processes during the light-signal transduction of phototropin
Authors:Matsuoka Daisuke  Iwata Tatsuya  Zikihara Kazunori  Kandori Hideki  Tokutomi Satoru
Affiliation:Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Naka-ku, Sakai, Osaka, Japan.
Abstract:
Phototropin is a blue-light photoreceptor in plants that mediates phototropism, chloroplast relocation, stomata opening and leaf expansion. Phototropin molecule has two photoreceptive domains named LOV1 (light-oxygen-voltage) and LOV2 in the N-terminus and a serine/threonine kinase domain in the C-terminus, and acts as a blue light-regulated kinase. Each LOV domain binds a flavin mononucleotide as a chromophore and undergoes unique cyclic reactions upon blue-light absorption that comprises a cysteinyl-flavin adduct formation through a triplet-excited state and a successive adduct break to revert to the initial ground state. The molecular reactions underlying the photocycle are reviewed and one of the probable molecular schemes is presented. Adduct formation alters the secondary protein structure of the LOV domains. This structural change could be transferred to the linker between the kinase domain and involved in the photoregulation of the kinase activity. The structural changes as well as the oligomeric structures seem to differ between LOV1 and LOV2, which may explain the proposed roles of each domain in the photoregulation of the kinase activity. The photoregulation mechanism of phototropin kinase is reviewed and discussed in reference to the regulation mechanism of protein kinase A, which it resembles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号