首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Redox activity and diffusion of hydrophilic, hydrophobic, and amphiphilic redox active molecules in a bicontinuous cubic phase
Authors:Kostela Johan  Elmgren Maja  Kadi Mari  Almgren Mats
Institution:Department of Physical Chemistry, Uppsala University, Box 579, S-751 23 Uppsala, Sweden. johan.kostela@fki.uu.se
Abstract:The objective was to examine how a bicontinuous cubic phase influences the diffusion and electrochemical activity of dissolved molecules. The cubic phase is a structure with three-dimensional continuous channels of water separated by an apolar membrane. A redox active molecule can dissolve in three different environments. A hydrophobic molecule will prefer the interior of the membrane, a hydrophilic molecule will prefer the water channels, and an amphiphilic molecule will be situated with its headgroup at the surface of the membrane and its tail in the interior. The electrochemical activity was measured with cyclic voltammetry and the transport behavior with chronocoulometry. All the molecules were redox active in the cubic phase; that is, all the molecules could reach the surface of the electrode and react. The cubic phase made the kinetics of the charge transfer slower, showing a quasi-reversible behavior. The reason may be that a layer of the membrane adheres to the hydrophobic electrode surface. The diffusion experiment showed that the diffusion was slower than in solution. The molecules that were restricted to diffuse within the membrane gave particularly low mass transport rates.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号