首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Versatile behavior of the fluorophosphinidene ligand in iron carbonyl chemistry
Authors:Zhou Liqing  Li Guoliang  Li Qian-Shu  Xie Yaoming  King R Bruce
Institution:Center for Computational Quantum Chemistry, South China Normal University, Guangzhou 510631, China.
Abstract:Fluorophosphinidene (PF) is a versatile ligand found experimentally in the transient species M(CO)(5)(PF) (M = Cr, Mo) as well as the stable cluster Ru(5)(CO)(15)(μ(4)-PF). The PF ligand can function as either a bent two-electron donor or a linear four-electron donor with the former being more common. The mononuclear tetracarbonyl Fe(PF)(CO)(4) is predicted to have a trigonal bipyramidal structure analogous to Fe(CO)(5) but with a bent PF ligand replacing one of the equatorial CO groups. The tricarbonyl Fe(PF)(CO)(3) is predicted to have two low-energy singlet structures, namely, one with a bent PF ligand and a 16-electron iron configuration and the other with a linear PF ligand and the favored 18-electron iron configuration. Low-energy structures of the dicarbonyl Fe(PF)(CO)(2) have bent PF ligands and triplet spin multiplicities. The lowest energy structures of the binuclear Fe(2)(PF)(CO)(8) and Fe(2)(PF)(2)(CO)(7) derivatives are triply bridged structures analogous to the experimental structure of the analogous Fe(2)(CO)(9). The three bridges in each Fe(2)(PF)(CO)(8) and Fe(2)(PF)(2)(CO)(7) structure include all of the PF ligands. Other types of low-energy Fe(2)(PF)(2)(CO)(7) structures include the phosphorus-bridging carbonyl structure (FP)(2)COFe(2)(CO)(6), lying only ~2 kcal/mol above the global minimum, as well as an Fe(2)(CO)(7)(μ-P(2)F(2)) structure in which the two PF groups have coupled to form a difluorodiphosphene ligand unsymmetrically bridging the central Fe(2) unit.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号