首页 | 本学科首页   官方微博 | 高级检索  
     


An approximate maximum likelihood estimation for non-Gaussian non-minimum phase moving average processes
Authors:Keh-Shin Lii  Murray Rosenblatt
Abstract:
An approximate maximum likelihood procedure is proposed for the estimation of parameters in possibly nonminimum phase (noninvertible) moving average processes driven by independent and identically distributed non-Gaussian noise. Under appropriate conditions, parameter estimates that are solutions of likelihood-like equations are consistent and are asymptotically normal. A simulation study for MA(2) processes illustrates the estimation procedure.
Keywords:approximate maximum likelihood estimates   asymptotic normality   moving average   nonminimum phase   noninvertible   non-Gaussian
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号