首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of ferric ions on the conductivity of various types of polymer cation exchange membranes
Authors:Victor Pupkevich  Vassili Glibin  Dimitre Karamanev
Affiliation:(1) Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
Abstract:Recently, rejuvenated interest to fuel cells has posed a number of problems regarding the polymer electrolyte membrane properties and their behaviour in different electrolyte solutions. This work was dedicated to study the conductivity of H+-, Fe3+- and mixed H+/Fe3+-forms of cation exchange membranes Neosepta CMS, Nafion 112, 115 and 117 and Selemion HSF under conditions similar to these in the Fe3+/Fe2+–H2/H+ fuel cell in the range of current densities 0–90 mA/cm2. It was found that the conductivities of these membranes in 1.09 M H2SO4 solution decrease in the following order: Selemion HSF › Nafion 117 ≈ Nafion 115 ≈ Neosepta CMS › Nafion 112. Conductivities of perfluorinated membranes were discussed in terms of Hsu and Gierke percolation theory [20]. The Fe3+-forms of Nafion membranes studied displayed a monotonous decline in the resistance when current increased, which is a manifestation of gradual conversion of the Fe3+-form into H+-form of these membranes. Unlike the Nafion membranes, the Fe3+-forms of Neosepta CMS and Selemion HSF membranes exhibited a sharp jump of resistance at relatively high current densities (more than 70 mA/cm2) that is most probably a result of concentration polarization.
Keywords:Polymer electrolyte membrane  Membrane conductivity  Membrane resistance  Ferric ions
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号