The inertial effect on the natural convection flow within a fluid-saturated porous medium |
| |
Authors: | D.M. Manole J.L. Lage |
| |
Affiliation: | Mechanical Engineering Department, Southern Methodist University, Dallas, TX, USA |
| |
Abstract: | The general momentum equation for fluid flow within a porous medium is supposedly valid for any fluid-porous medium configuration. One of the main concerns of using the general equations refers to the inclusion of both inertia terms, namely, the convective inertia term and the Forchheimer term. In this study, we go beyond the important discussion about the correctness of including both terms in the general momentum equations by focusing upon the effect of the convective inertia term on the heat transfer results. The fluid-porous medium system considered here is a cavity bounded by solid surfaces with vertical walls maintained at constant but different temperatures. The natural convection problem is solved numerically, and the results are compared with a general theory developed by using the method of scale analysis. It is demonstrated that the convective inertia term effect upon the heat transfer results is minor for 0.01 ≤ Pr ≤ 1, 10 ≤ RaD ≤ 104, 10−8 ≤ Da ≤ 10−2, and porosities 0.4 and 0.8. It is also shown that, contrary to the general belief, the convective inertial effect upon the heat transfer within the cavity is minimized when the Prandtl number is reduced. |
| |
Keywords: | porous medium inertial effect natural convection |
本文献已被 ScienceDirect 等数据库收录! |
|