首页 | 本学科首页   官方微博 | 高级检索  
     


Bienzyme-based visual and spectrophotometric aptamer assay for quantitation of nanomolar levels of mercury(II)
Authors:Ruoxi?Zhang,Li?Deng,Paijin?Zhu,Shuxia?Xu,Chengpeng?Huang,Ying?Zeng,Shijun?Ni,Xinfeng?Zhang  mailto:Zhangxinfeng@cdut.cn"   title="  Zhangxinfeng@cdut.cn"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:1.College of Earth Science,Chengdu University of Technology,Chengdu,China;2.College of Materials, Chemistry & Chemical Engineering,Chengdu University of Technology,Chengdu,China
Abstract:
The article describes a bienzyme visual system for aptamer-based assay of Hg(II) at nanomolar levels. The detection scheme is based on the finding that Hg(II) ions captured by aptamer-functionalized magnetic beads are capable of inhibiting the enzymatic activity of uricase and thus affect the formation of H2O2 and the blue product, i.e., oxidized tetramethylbenzidine. This strategy allows for a visual detection of Hg(II) at nanomolar levels without additional amplification procedure. Measuring the absorbance at 650 nm, the logarithmic calibration plot is linear in the concentration range of 0.5–50 nM and the limit of detection (LOD) is 0.15 nM. This is as low as the LOD obtained by atomic fluorescence spectrometry (AFS). The ions K+, Mg2+, Na+, Ca2+, Cu2+, Zn2+, Fe3+, Al3+, Co2+, AsO2 ?, Ni2+, Cd2+ and Pb2+ do not have a significant effect on color formation. The method was applied to the analysis of (spiked) river water, lake water, mineral water, tap water and certified reference water samples, and the results agreed well with those obtained by AFS or certified values, with recoveries ranging from 97% to 109%. The relative standard deviation for five parallel detections at a 10 nM Hg(II) level is 5.2%.
Graphical abstract A bienzyme-based visual aptasensor was fabricated for label-free detection of nanomolar Hg2+ in water samples without any amplification or enrichment procedure.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号