首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogen bond nature in formamide (CYHNH2···XH; YO,S, Se,Te; XF,HO, NH2) complexes at their ground and low‐lying excited states
Authors:Sultana Bedoura  Hong‐Wei Xi  Kok Hwa Lim
Institution:Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, , Singapore, 637459 Singapore
Abstract:A theoretical study on the nature of hydrogen bond for formamide and its heavy complexes (CYHNH2···XH; Y?O, S, Se, Te; X?F, HO, NH2) was performed on the basis of density functional theory and the quantum chemistry analysis. Except for the CYHNH2···NH3 complexes, the substitution of O atom at formamide with less electronegative atoms (S, Se, and Te) is found to weaken the hydrogen bond (H‐bond). This substitution results in cyclic structure of hydrated and ammoniated formamide complexes by the formation of bifunctional H‐bonds (Y···H4X; X···H3C). Natural bond orbital analysis indicates that the H‐bond is weakened because of less charge transfer from a lone pair orbital of H‐bond acceptor to antibonding orbital of H‐bond donor. The quantum theory of atoms in molecules analysis reveals that the acyclic structure with single H‐bond stabilizes the complexes more than the cyclic structure formed by bifunctional H‐bonds. Natural energy decomposition analysis (NEDA) and block‐localized wavefunction energy decomposition (BLW‐ED) analyses show that the H‐bond stabilization energies of NEDA and BLW‐ED have good correlation with the dissociation energy of formamide complexes and charge transfer from donor to acceptor atom play an important role in H‐bonding. We have also studied the low‐lying electronic excited states (T1, T2, and S1) for CYHNH2···H2O complexes to explore the nature of H‐bond on the basis of electronegativity and found that NEDA also establishes a good correlation with relative electronic energy (with respect to their ground state) and H‐bond strength at their excited states. Copyright © 2014 John Wiley & Sons, Ltd.
Keywords:hydrogen bond  QTAIM analysis  NEDA analysis  BLW‐ED analysis  excited states and formamide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号