首页 | 本学科首页   官方微博 | 高级检索  
     


Population transfer to excited vibrational levels of H2 molecule by stimulated hyper-Raman passage with chirped laser pulses
Authors:Sarkar Chitrakshya  Bhattacharya Rangana  Bhattacharyya S S  Saha Samir
Affiliation:Atomic and Molecular Physics Section, Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India.
Abstract:We have theoretically investigated the population transfer from the initial ground rovibrational level v(g)=0, J(g)=0 to the final rovibrational levels v(f)=1,2, J(f)=0 of the ground electronic state X (1)Sigma(g) (+) via the resonant intermediate level v(i)=6, J(i)=0 of the excited electronic state EF (1)Sigma(g) (+) of H(2) molecule by (2+2)-photon stimulated hyper-Raman passage (STIHRP). The density matrix technique has been employed to evaluate the population transfer to the final target levels using linearly chirped pump and Stokes laser pulses with different chirp rates. Both the pulses are considered to have the same temporal shape, pulse width, and linear parallel polarizations. We have studied in detail the dependence of the population transfer on the set of laser parameters for pulse (peak) intensities in the ranges of 1.5 x 10(11)-1.0 x 10(12) and 1.0 x 10(12)-7.0 x 10(12) W/cm(2). The corresponding pulse widths (full width at half maximum) are of the order of 115-200 and 15-30 ps. We have found that the chirp rate parameters can be optimized to achieve almost complete population transfer from the ground (g) to the final (f) target levels. This, to our knowledge, is the first application of a (2+2)-photon STIHRP process with chirpings to a model molecular system (H(2)). The study demonstrates the suitability of the chirped (2+2)-photon STIHRP technique for selective and almost total inversion of vibrational population in a diatomic molecule.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号