首页 | 本学科首页   官方微博 | 高级检索  
     


Two-body Coulomb explosion and hydrogen migration in methanol induced by intense 7 and 21 fs laser pulses
Authors:Itakura Ryuji  Liu Peng  Furukawa Yusuke  Okino Tomoya  Yamanouchi Kaoru  Nakano Hidetoshi
Affiliation:Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Abstract:Two-body Coulomb explosion with the C-O bond breaking of methanol induced by intense laser pulses with the duration of Delta t=7 and 21 fs is investigated by the coincidence momentum imaging method. When Delta t=7 fs, the angular distribution of recoil vectors of the fragment ions for the direct C-O bond breaking pathway, CH(3)OH(2+)-->CH(3) (+)+OH(+), exhibits a peak deflected from the laser polarization direction by 30 degrees -45 degrees , and the corresponding angular distribution for the migration pathway, CH(2)OH(2) (+)-->CH(2) (+)+H(2)O(+), in which one hydrogen migrates from the carbon site to the oxygen site prior to the C-O bond breaking, exhibits almost the same profile. When the laser pulse duration is stretched to Delta t=21 fs, the angular distributions for the direct and migration pathways exhibit a broad peak along the laser polarization direction probably due to the dynamical alignment and/or the change in the double ionization mechanism; that is, from the nonsequential double ionization to the sequential double ionization. However, the extent of the anisotropy in the migration pathway is smaller than that in the direct pathway, exhibiting a substantial effect of hydrogen atom migration in the dissociative ionization of methanol interacting with the linearly polarized intense laser field.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号