首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photogenotoxicity of Skin Phototumorigenic Fluoroquinolone Antibiotics Detected Using the Comet Assay
Authors:Helen J Reavy  Nicola J Traynor  Neil K Gibbs
Institution:Photobiology Unit, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland
Abstract:Abstract— The fluoroquinolone(FQ) antibiotics photosensitize human skin to solar UV radiation and are reported to photosensitize tumor formation in mouse skin. As tumor initiation will not occur without genotoxic insult, we examined the potential of ciprofloxacin, lomefloxacin, fle-roxacin, BAYy3118 (a recently developed monofluori-nated quinolone) and nalidixic acid to photosensitize DNA damage in V79 hamster fibroblasts in vitro. Cells were exposed to 37.5 kj/m2 UVA (320-400 nm; glass filtered Sylvania psoralen + UVA (PUVA) tubes; calibrated Waldmann radiometer) at 4AoC in the presence of FQ and immediately afterwards embedded in agarose, lysed and placed in an electrophoretic field at pH 12. Under these denaturing conditions, the presence of DNA single-strand breaks (SSB), alkali-labile sites (ALS) and double-strand breaks (DSB) can be visualized as DNA migrating away from the nucleus (characteristic "comet" appearance) after staining with a specific fluorochrome. At FQ concentrations that induced minimal loss of cell viability (neutral red uptake assay) the compounds tested induced comets with a rank order of BAYy3118 norfloxacin ciprofloxacin lomefloxacin fleroxacin nalidixic acid. If cells were incubated after treatment for 1 h at 37oC, the comet score decreased, suggesting efficient removal of SSB/ALS/DSB. Addition of the DNA polymerase, inhibitor, aphidicolin, to cells treated with either ciprofloxacin alone or ciprofloxacin + UVA resulted in an accumulation of SSB due to the endo/exonuclease steps of excision repair. We have demonstrated that the FQ are photogenotoxic in mammalian cells but that FQ-pho-tosensitized SSB are efficiently repaired. Preliminary evidence that ciprofloxacin photosensitizes the formation of DNA lesions warranting excision repair may indicate production of more mutagenic lesions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号