首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Grafting acrylic polymers from flat nickel and copper surfaces by surface-initiated atom transfer radical polymerization
Authors:Chen Renxu  Zhu Shiping  Maclaughlin Shane
Institution:Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7.
Abstract:Acrylic polymers, including poly(methyl methacrylate), poly(2,2,2-trifluoroethyl methacrylate), poly( N,N'-dimethyaminoethyl methacrylate), and poly(2-hydroxyethyl methacrylate) were grafted from flat nickel and copper surfaces through surface-initiated atom transfer radical polymerization (ATRP). For the nickel system, there was a linear relationship between polymer layer thickness and monomer conversion or molecular weight of "free" polymers. The thickness of the polymer brush films was greater than 80 nm after 6 h of reaction time. The grafting density was estimated to be 0.40 chains/nm2. The "living" chain ends of grafted polymers were still active and initiated the growth of a second block of polymer. Block copolymer brushes with different block sequences were successfully prepared. The experimental surface chemical compositions as measured by X-ray photoelectron spectroscopy agreed very well with their theoretical values. Water contact angle measurements further confirmed the successful grafting of polymers from nickel and copper surfaces. The surface morphologies of all samples were studied by atomic force microscopy. This study provided a novel approach to prepare stable functional polymer coatings on reactive metal surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号