Surface analytical characterization of oxide-free Si(100) wafer surfaces |
| |
Authors: | L. Mü hlhoff T. Bolze |
| |
Affiliation: | (1) Mikroelektronik-Technologiezentrum, SIEMENS AG, Otto-Hahn-Ring 6, D-8000 München 83, Federal Republic of Germany |
| |
Abstract: | Summary Wet-chemical cleaning procedures of Si(100) wafers are surface analytically characterized and compared. Hydrophobic surfaces show considerably less native oxides in comparison to hydrophilic surfaces.The growth of the oxide is determined as a function of exposure to air by means of XPS measurements. The chemically shifted Si2p XPS signal is utilized for the quantification of the growth kinetics.One hour after cleaning no chemically shifted Si2p XPS peak is discernible on the hydrophobic surfaces. Assuming homogeneous oxide growth, the detection limit of native oxides is estimated to be below 0.05 nm using an emission angle of 18° with respect to the wafer surface. The calculation of the oxide thickness from the chemically shifted and nonchemically shifted Si2p XPS peak intensities is carried out according to Finster and Schulze [1]. For more than a day after cleaning no surface oxides can be identified on the hydrophobic surfaces. The oxide growth kinetics is logarithmic. The very slow oxidation rate cannot be attributed to fluorine residues since no fluorine is seen by XPS. We explain the slow oxidation rate by a homogeneous hydrogen saturated Si(100) wafer surface.
Oberflächenanalytische Charakterisierung oxidfreier Si(100)-Waferoberflächen |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |