Solitary Wave Transformation Due to a Change in Polarity |
| |
Authors: | Roger Grimshaw,Efim Pelinovsky,& Tatjana Talipova |
| |
Affiliation: | Monash University,;Nizhni Novgorod Technical University |
| |
Abstract: | Solitary wave transformation in a zone with sign-variable coefficient for the quadratic nonlinear term is studied for the variable-coefficient Korteweg–de Vries equation. Such a change of sign implies a change in polarity for the solitary wave solutions of this equation. This situation can be realized for internal waves in a stratified ocean, when the pycnocline lies halfway between the seabed and the sea surface. The width of the transition zone of the variable nonlinear coefficient is allowed to vary over a wide range. In the case of a short transition zone it is shown using asymptotic theory that there is no solitary wave generation after passage through the turning point, where the coefficient of the quadratic nonlinear term goes to zero. In the case of a very wide transition zone it is shown that one or more solitary waves of the opposite polarity are generated after passage through the turning point. Here, asymptotic methods are effective only for the first (adiabatic) stage when the solitary wave is approaching the turning point. The results from the asymptotic theories are confirmed by direct numerical simulation. The hypothesis that the pedestal behind the solitary wave approaching the turning point has a significant role on the generation of the terminal solitary wave after the transition zone is examined. It is shown that the pedestal is not the sole contributor to the amplitude of the terminal solitary wave. A negative disturbance at the turning point due to the transformation in the zone of the variable nonlinear coefficient contributes as much to the process of the generation of the terminal solitary waves. |
| |
Keywords: | |
|
|