首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An iron(II) dihydrogen hydrido complex containing the tripodal tetraphosphine ligand P(CH2CH2PMe2)3
Authors:Field Leslie D  Li Hsiu L  Messerle Barbara A  Smernik Ronald J  Turner Peter
Institution:School of Chemistry, University of Sydney, NSW 2006, Australia.
Abstract:The dihydrogen hydrido complex FeH(H2)(PP3)]+ 1 (PP3 = P(CH2CH2PMe2)3 2) was formed by the protonation of the dihydrido complex FeH2(PP3) 3 with methanol or ethanol. The observation of H-D coupling in partially deuterated isotopomers of 1 and measurement of T1 relaxation times for the hydrido and dihydrogen resonances of 1 confirmed the presence of the eta2-dihydrogen ligand. Complex 1 shows dynamic NMR behaviour in both the 31P and 1H NMR spectra with facile exchange between the protons in the eta2-dihydrogen ligand and the eta1-hydrido ligand. The dihydrogen ligand of 1 is easily displaced by both anionic and neutral ligands to afford the corresponding hydrido complexes FeHX(PP3)]+ (X = CO 11, X = PPh3 12) or FeHX(PP3)(X = Cl 13, X = Br 14, X = I 15, X = N3 16). Small quantities of the alkoxy hydrido complexes FeH(OR)(PP3)(R = Me 4; R = Et 5) are observed in methanol and ethanol solutions containing 1. In methanol solution, FeH(OMe)(PP3) 4 reacts to form the carbonyl hydrido complex FeH(CO)(PP3)]+ 11 and isotopic labelling confirms that the carbonyl ligand of 11 is derived from the methanol solvent. The mechanism of methanol oxidation presumably proceeds through beta-hydride elimination from FeH(OMe)(PP3) to produce formaldehyde as an intermediate which is further dehydrogenated to form the carbonyl ligand. FeH(H2)(PP3)]+ 1 and FeHCl(PP3) 13 react rapidly with paraformaldehyde to also form FeH(CO)(PP3)]+ 11. Complex 11 also decarbonylates acetaldehyde to afford the methyl carbonyl complex FeMe(CO)(PP3)]+ 17. The structure of 17 was confirmed by X-ray crystallography.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号