Abstract: | A modified marker-and-cell method is developed in order to simulate nonlinear wave making in the near-field of ships of arbitrary three-dimensional (3D) configuration advancing steadily in deep water. The 3D Navier-Stokes equations are solved by a finite difference scheme under proper boundary conditions. Efforts are particularly focused on the treatment of the boundary conditions on the body surface and free surface which have complicated 3D configurations. An orthogonal cell system with more than 70,000 cells is used for the computation of the waves and flow field of ships. The agreement of computational results with experiment is good, and it promises effectiveness for engineering purposes. |