Abstract: | Zr-metal organic frameworks (Zr-MOFs, UIO-66) as a kind of crystalline porous material possess controllable porous structure and strong thermal stability up to 753 K. In this paper, we synthesized Ni3(NO3)2(OH)4, Zr-MOF with high specific surface area (1073 m2 g−1) and Ni3(NO3)2(OH)4@Zr-MOF composite for pseudocapacitor material. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were taken to characterize the structure and morphology of Ni3(NO3)2(OH)4, Zr-MOF, and Ni3(NO3)2(OH)4@Zr-MOF. The porous structure of Zr-MOF favors the utilization of the active material Ni3(NO3)2(OH)4 and interfacial charge transport and provides short diffusion paths for ions, which results in a high specific capacitance. Electrochemical properties are evaluated by cyclic voltammetry (CV) and galvanostatic charge/discharge measurement. A maximum specific capacitance (SC) of 992 F/g was obtained from CV at a scan rate of 5 mVs−1, which is higher than Zr-MOF (∼134 F g−1) and Ni3(NO3)2(OH)4 (∼753 F g−1). Meanwhile, the Ni3(NO3)2(OH)4@Zr-MOF composite electrode exhibits a good cycling stability over 3000 cycles. |