Abstract: | Using a two-dimensional self-consistent field calculation, we determine the equilibrium morphology of thin films of ABC triblock copolymers confined between hard, smooth plates. The B segment is chosen to be the central block and all the blocks are incompatible. The chains microphase-segregate into a lamellar phase, with the stripes either perpendicular or parallel to the walls. When all the monomer-surface interactions are identical, the perpendicular orientation has the lowest free energy. When a repulsion is introduced between the surface and the A and C monomers. The surface interactions further stabilize the perpendicular orientation. At strong surface interactions, the morphology of the perpendicular structure is controlled by the overall thickness of the molten layer. In comparing diblocks to triblocks as candidates for forming laterally patterned films, our work indicates that triblocks possess distinct advantages over diblocks. First, no special effort needs to be taken to establish neutral surfaces. Second, the film does not have to be confined between two substrates. Thus, triblocks can be used to fabricate patterned polymer surfaces, which can be used for novel optical or electronic applications. |