首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stability and emissions control using air injection and H2 addition in premixed combustion
Authors:Ahmed F Ghoniem  Anuradha Annaswamy  Sungbae Park  Ziaieh C Sobhani
Institution:Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Rm 3-342, Cambridge, MA 02139, USA
Abstract:We experimentally study lean premixed combustion stabilized behind a backward-facing step. For a propane–air mixture, the lean blowout limit is associated with strong pressure fluctuation arising simultaneously with strong flame–vortex interactions, which have been shown to constitute the mechanism of heat release dynamics in this flow. A high-speed air jet, issuing from a small slot and injected perpendicular to the main flow near the step, is used to disrupt this mechanism. For momentum ratio of jet to main flow below unity, the jet dilutes the mixture, further destabilizing the flame or leading to complete blowout. Above unity, the flame becomes more stable, and the pressure oscillations are suppressed. Flow visualization and OH*/CH* chemiluminescence measurements show that a strong jet produces a more compact flame that is less driven by the wake vortex, anchored closer to the step, and deflected upwards away from the lower wall of the channel. This renders the flame less vulnerable to heat loss and strong strains, which improves its stability and extends the flammability limit. Adding hydrogen to the main fuel improves the flame stability over the entire range of the air jet mass flow, with better results for momentum ratio larger than 1; H2 pulls the flame further upstream, away from the shear zone and the unsteady vortex. NOx emission benefits from the air jet, while, with H2 addition, NOx concentration is higher in the products as the overall burning temperature rises. However, hydrogen addition enables extending the flammability limit further by increasing air supply in the primary stream, hence achieving lower NOx. The study suggests a simpler, almost passive, multi-objective combustion control technique and indicates that hydrogen addition can be a successful in situ approach for NOx reduction.
Keywords:Hydrogen  Air injection  Stability  Emissions  Premixed combustion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号