首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Binding of Ricinus communis agglutinin to a galactose-carrying polymer brush on a colloidal gold monolayer
Authors:Mizukami Kazuya  Takakura Hajime  Matsunaga Takayuki  Kitano Hiromi
Institution:Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan.
Abstract:A polymer with many pendent galactose residues was prepared by atom-transfer radical polymerization (ATRP) of galactose-carrying vinyl monomer, 2-lactobionamidoethyl methacrylate (LAMA), with a disulfide-carrying ATRP initiator, 2-(2'-bromoisobutyroyl)ethyl disulfide (DT-Br). The galactose-carrying polymer obtained (DT-PLAMA) was accumulated as a polymer brush via Au-S bond on a colloidal gold monolayer deposited on a cover glass. For comparison, a disulfide which carried one galactose residue at both ends (2-lactobionamidoethyl disulfide, Cys-Lac) was accumulated as a self-assembled monolayer (SAM) on the colloidal gold monolayer, too. The association and dissociation processes of galactose residues on the colloidal gold with a lectin, Ricinus communis agglutinin (RCA(120)), were observed by the increase and decrease in absorbance at 550nm corresponding to localized surface plasmon resonance (LSPR) phenomena. The Cys-Lac SAM-carrying glass chip showed a strong non-specific adsorption of the lectin, whereas the DT-PLAMA brush-carrying one reversibly associated with the lectin, indicating reusability of the latter device. The apparent association constant of the lectin with the galactose residues in the DT-PLAMA brush was much larger than the association constant for free galactose, and the detection limit of RCA(120) by the glycopolymer brush-modified device was satisfactorily low. Furthermore, a microscopic observation clearly indicated that the DT-PLAMA brush could reversibly associate with a HepG2 cell having galactose receptors, though these processes could not be observed spectrophotometrically due to a gigantic size of the cell.
Keywords:Galactose receptor  Glycopolymer  Lectin  Localized surface plasmon resonance  Polymer brush
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号