首页 | 本学科首页   官方微博 | 高级检索  
     检索      

碳自掺杂g-C3N4光催化性能的原位光微量热-荧光光谱研究
引用本文:马祥英,廖艳娟,覃方红,尹源浩,黄在银,陈其锋.碳自掺杂g-C3N4光催化性能的原位光微量热-荧光光谱研究[J].高等学校化学学报,2020,41(11):2526.
作者姓名:马祥英  廖艳娟  覃方红  尹源浩  黄在银  陈其锋
作者单位:1.广西民族大学化学化工学院;2.海洋与生物技术学院, 南宁 530008
基金项目:国家自然科学基金(批准号(21573048);21873022)、 广西中青年教师基础能力提升项目(批准号(2017KY0167);2018KY016 5)、 广西民族大学科学研究项目(2017MDYB007);广西自然科学基金(2017JJA120714y);广西民族大学实验技术创新与实验室管理研究项目(2016MDSY008)
摘    要:通过在尿素前驱体中添加单宁酸, 原位缩聚形成碳自掺杂石墨相氮化碳(g-C3N4). 利用X射线光电子能谱(XPS)、 场发射扫描电子显微镜(FESEM)、 X射线衍射(XRD)仪和同步热分析(TG-DSC)等方法对碳自掺杂 g-C3N4的形貌、 物相结构和能带价态组分进行表征分析, 结合紫外-可见吸收光谱(UV-Vis)和原位光微量热-荧光光谱联用仪获得碳自掺杂g-C3N4降解罗丹明B的原位热/动力学信息和三维荧光光谱信息, 探讨了光催化降解罗丹明B的微观机制. 结果表明, 单宁酸浓度≤10 mg/mL时, 碳会取代七嗪单元结构的氮原子形成g-C3N4骨架碳自掺杂; 单宁酸浓度≥ 20 mg/mL时, 碳以无定形形式沉积负载在g-C3N4表面上形成无定形碳自掺杂. 骨架碳自掺杂g-C3N4形成的π电子有效缩短了禁带宽度, 减小了光生电子-空穴复合几率, 比无定形C掺杂g-C3N4显示出更优异的光催化性能, 催化主要活性物种为h+和·O2-. 碳自掺杂g-C3N4光催化降解过程可分为光响应吸热、 降解污染物放热平衡过程和稳定放热3个过程. 其中骨架碳自掺杂g-C3N4(C/N摩尔比为0.844)在光照1000 s内, 三维荧光光谱检测的RhB降解率锐减, 光照1000 s后, 其RhB降解率为87.6%, 分别是原始g-C3N4和无定形碳自掺杂g-C3N4的3.13倍和1.95倍. 光照1000 s后, 光微量热计显示以矿化和降解非荧光发色中间产物为主, 并保持以热变速率为(0.9799±0.5356) μJ/s稳定放热, 为拟零级反应过程, 是光催化反应的决速步骤.

关 键 词:石墨相氮化碳  掺杂  光催化  光微量热计  原位荧光光谱  
收稿时间:2020-05-26

Study on the Photocatalytic Performance of Carbon Doped g-C3N4 Based on in situ Photomicrocalorimeter-fluorescence Spectrometry
MA Xiangying,LIAO Yanjun,QIN Fanghong,YIN Yuanhao,HUANG Zaiyin,CHEN Qifeng.Study on the Photocatalytic Performance of Carbon Doped g-C3N4 Based on in situ Photomicrocalorimeter-fluorescence Spectrometry[J].Chemical Research In Chinese Universities,2020,41(11):2526.
Authors:MA Xiangying  LIAO Yanjun  QIN Fanghong  YIN Yuanhao  HUANG Zaiyin  CHEN Qifeng
Institution:1.College of Chemistry and Chemical Engineering;2.College of Marine and Biotechnology,Guangxi University for Nationalities,Nanning 530008,China
Abstract:Carbon-doped graphite nitride(g-C3N4) was synthesized by adding tannic acid to urea precursor. X-ray photoelectron spectroscopy(XPS), field emission scanning electron microscopy(FESEM), X-ray diffractometer(XRD), synchronous thermal analysis(TG-DSC) and other methods were used to characterize the morphology phase and valence components of carbon doped g-C3N4. The photocatalytic degradation mechanism of Rhodamine B was investigated by using UV-Vis and in situ photomicrocalorimeter-fluorescence spectrometry to obtain in situ thermodynamics/kinetic information and 3D fluorescence spectral information of the degradation of Rhodamine B by carbon doped g-C3N4.The results showed that, when the tannic acid concentration was ≤10 mg/mL, the carbon would replace nitrogen atoms in the unit structure of heptazine to form g-C3N4 skeleton carbon doping. When the tannic acid concentration is ≥20 mg/mL, the carbon deposition load on the surface of g-C3N4 in amorphous form forms amorphous carbon doping . The skeleton carbon doped g-C3N4 to form π electrons effectively shorted the band gap width and reduced the photoelectron-hole recombination probability, showing excellent photocatalytic performance. The main active species of catalysis were h+ and ·O2-. The photocatalytic degradation process of carbon doped g-C3N4 can be divided into three processes: endothermic of light responds, the balance process of endothermic of light responds and exothermic of pollutant degradation, and stable exothermic. The intensity of fluorescence emission peak of Rhodamine B over skeleton carbon doped g-C3N4(C/N=0.844) decreased sharply within the illumination of 1000 s, its degradation rate reached 87.6%,which was 3.13 times and 1.95 times over original g-C3N4 and amorphous carbon doped g-C3N4, respectively. After illumination of 1000 s, the photodegradation of the ring and intermediates without fluorescent chromophores were dominated, which maintained a stable exothermic rate of (0.9799±0.5356) μJ/s with a pseudo-zero order process. This process was the rate-determining step. Therefore, Rhodamine B photocatalysis was a pseudo-zero-order process rather than a first order process.
Keywords:g-C3N4  Doping  Photocatalyst  Photomicrocalorimeter  In situ fluorescence spectrum  
点击此处可从《高等学校化学学报》浏览原始摘要信息
点击此处可从《高等学校化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号