Abstract: | ![]() Waves generated by submarine landslides are treated as three-dimensional flows of a perfect incompressible fluid. For the solution of the Cauchy-Poisson problem a time-discretization is applied which leads at each time step to a non-homogeneous free surface condition; the solution is then divided into two parts. The first part, subject to the true free surface condition, is computed in a simplified domain with constant depth. The second part involves a homogeneous free surface condition, a corrected bottom condition and the true bathymetry. In the case of constant depth, unconditional stability of the time discretization is derived. In the case of variable depth, mass and energy conservation is derived. Numerical results are presented. Comparison is made with other methods for the generation of axisymmetric waves. The transient propagation along a rectilinear coast is studied, including a comparison between two different bathymetries; trapping of energy is observed. |