Abstract: | The reactions of monomaleamic acid derived from an aromatic diamine with furfural afforded a novel class of furfurylidene-substituted maleamic acids 2a–2d . The latter were cyclodehydrated to yield maleimides 3a–3d which are AB-monomers for a Diels–Alder polymerization. In addition, N-furfurylmaleamic acid ( 4 ) was synthesized by reacting furfurylamine with maleic anhydride at ambient temperature. Cyclodehydration of 4 afforded N-furfurylmaleimide ( 5 ). The polymer precursors were characterized by IR and 1H-NMR spectroscopy. Their curing behavior was investigated by DTA and correlated with chemical structures. Diels–Alder polymerization of monomers occurred at the temperature range of 113–210°C. Thermal stability of monomers was evaluated by TGA and isothermal gravimetric analysis (IGA). It was shown that thermal stability of the polymer derived from maleamic acid 4 was dramatically improved upon curing at high temperatures due to the formation by dehydration of a stable aromatic structure. |