Abstract: | 4-Fluorobenzophenone reacted with potassium carbonate in the presence of silica catalyst in diphenyl sulfone solvent to yield 4,4′-dibenzoyldiphenyl ether. This new etherification reaction was extended to three difluoro aromatic ketones. 4,4′-Bis(4-fluorobenzoyl)diphenyl ether ( I ) reacted with potassium carbonate to yield a crystalline poly(oxy-1,4-phenylene-carbonyl-1,4-phenylene) (PEK) and 4,4′-bis{4-[4-(4-fluorobenzoyl)phenoxy]benzoyl}benzene ( II ) gave a crystalline poly(oxy-1,4-phenylene-carbonyl-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene-carbonyl-1,4-phenylene)(PEKEKEKK). 2,8-Bis(4-fluorobenzoyl)dibenzofuran ( III ) or 2,8-bis(4-chlorobenzoyl)dibenzofuran ( IV ) reacted with potassium carbonate to yield a poly(oxy-1,4-phenylene-carbonyl-2,8-dibenzofuran-carbonyl-1,4-phenylene) (PEKBK). The PEKBK was a noval amorphous polymer with the glass transition temperature of 222°C and it showed excellent thermal stability [T. Tanabe and I. Fukawa, Jpn. Pat., Kokai 64–74223 (1989)]. Several amorphous dibenzofuran type polyetherketone copolymers were prepared by coplycondensation of III with 4,4′-difluorobenzophenone ( V ) or 1,4-bis(4-fluorobenzoyl)benzene ( VI ) [T. Tanabe and I. Fukawa, Jpn. Pat., Kokai 1153722 (1989)]. © 1992 John Wiley & Sons, Inc. |