Abstract: | ![]() A compressible lattice model with holes, the glassy polymer lattice sorption model (GPLSM), was used to model the sorption of carbon dioxide, methane, and ethylene in glassy polycarbonate and carbon dioxide in glassy tetramethyl polycarbonate. For glassy polymers, an incompressible lattice model, such as the Flory–Huggins theory, requires concentration-dependent and physically unrealistic values for the lattice site volumes in order to satisfy lattice incompressibility. Rather than forcing lattice incompressibility, GPLSM was used and reasonable parameter values were obtained. The effect of conditioning on gas sorption in glassy polymers was analyzed quantitatively with GPLSM. The Henry's law constant decreases significantly upon gas conditioning, reflecting changes in the polymer matrix at infinite dilution. Treating the Henry's law constant as a hypothetical vapor pressure at infinite dilution, gas molecules in the conditioned polymer are less “volatile” than those in the unconditioned polymer. Flory–Huggins theory was used to model the sorption of carbon dioxide, methane, and ethylene in silicone rubber. Above the glass transition temperature, the criterion of lattice incompressibility for Flory-Huggins theory was satisfied with physically realistic and constant values for the lattice site volumes. © 1992 John Wiley & Sons, Inc. |