首页 | 本学科首页   官方微博 | 高级检索  
     


Electron transfer. 123. Competitive redox reactions involving a Cobalt(I) intermediate
Authors:P. Deming  M. Gangoda  M. C. Ghosh  E. S. Gould
Affiliation:1. Department of Chemistry, Kent State University, 44242, Kent, Ohio, USA
Abstract:
he hypophosphito derivative of CoIII, (NH3)5CoO2PH2 2+, decomposes in basic media, yielding Co(II) quantitatively, along with a 1:1 mixture of hypophosphite and phosphite. Earlier studies point to a cobalt (I) intermediate, which rapidly reduces a second molecule of Co(III) reactant to Co(II). In the presence of an external cobalt (III) oxidant (Co3X), the latter competes with the hypophosphito complex for Co(I), lowering the yield of free hypophosphite. From the ratio of phosphorus products (P3/P1), evaluated by proton decoupled 31P NMR, the relative reactivities (kt/kc) of the external Co(III) “traps” and the hypophosphito complex may be determined. A log-log plot comparing values of kt/kc with rates for reductions of the same series of Co(III) oxidants with Ru(NH3)6 2+ (kRu values) is badly scattered with a slope of only 0.23, well below the value of unity stipulated by the Marcus model, indicating that an outer-sphere mechanism cannot operate for all of the Co(III)-Co(I) reactions and may not operate for any, except for that with Co(NH3)5(py)3+. Among the carboxylato-substituted oxidants, there are no rate enhancements by neighbouring pyridine, -SR,-OH, -CHO, or -SO3H functions, in contrast to the accelerations previously observed for reductions by Cr(II), Eu(II) and Ti(III), which are attributed to intermediacy of chelate-stabilized precursor complexes. It is suggested that the Co(III)-Co(I) reactions, which determine the ratio of phosphorus products, are much more rapid than the ligand substitution at the Co(I) center which must precede chelate formation, and that the latter therefore does not intervene significantly in the redox processes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号