首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析的自组织竞争神经网络在多光谱遥感影像分类中的应用
引用本文:周峰,李杏梅,刘福江,孙华山. 基于主成分分析的自组织竞争神经网络在多光谱遥感影像分类中的应用[J]. 光学与光电技术, 2007, 5(3): 43-46
作者姓名:周峰  李杏梅  刘福江  孙华山
作者单位:1. 中国地质大学信息工程学院,武汉,430074
2. 中国地质大学资源学院,武汉,430074
基金项目:中国地质大学(武汉)校科研和教改项目 , 山东招金集团博士后基金
摘    要:多光谱遥感影像具有波段多、信息量大的特点,传统的分类方法难以达到提高精度的要求.利用主成分分析对多波段遥感图像进行降维,再采用竞争型自组织神经网络对图像进行非监督分类.这种方法的分类精度为87.5%,Kappa系数为0.86,明显高于最大似然法,最小距离法和基于像元的自组织竞争神经网络法.实验结果表明该方法在多光谱遥感影像分类中具有较好的适用性.

关 键 词:主成分分析  自组织竞争神经网络  多光谱遥感图像  非监督分类
文章编号:1672-3392(2007)03-0043-04
收稿时间:2006-09-05
修稿时间:2006-09-052006-12-11

Self-Organizing Competition Neural Network Based on Principle Component Analysis in Multi-Spectrum Remote-Sensing Images Classification
ZHOU Feng,LI Xing-mei,LIU Fu-jiang,SUN Hua-shan. Self-Organizing Competition Neural Network Based on Principle Component Analysis in Multi-Spectrum Remote-Sensing Images Classification[J]. optics&optoelectronic technology, 2007, 5(3): 43-46
Authors:ZHOU Feng  LI Xing-mei  LIU Fu-jiang  SUN Hua-shan
Affiliation:1 Department of Information Engineering, China University of Geosciences, Wuhan 430074, China; 2 Department of Resources, China University of Geosciences, Wuhan 430074, China
Abstract:Due to the characteristics of many wavebands and large information quantity, multi-spectrum remote-sensing images are difficult to be classified with high accuracy by traditional methods. In this paper, we reduce the dimensions of multi-spectrum remote-sensing images with principle component analysis at first, and then perform unsupervised classification with self-organizing competition neural network. The classification accuracy of this method is 87. 5% and the Kappa coefficient is 0. 86. They are obviously higher than that of conventional maximum likelihood method, minimum distance method and selforganizing competition neural network method based on pixels. The results indicate this method can be well applied in multi-spectrum remote-sensing images classification.
Keywords:principle component analysis   self-organizing competition neural network   multi-spectrum remote-sensing images   unsupervised classification
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号