首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Boundary integral equations for 2D elasticity and its application in discrete dislocation simulation in finite body: 2. Numerical implementation
Institution:Department of Mechanical Engineering, The City College of New York, City University of New York, New York, NY 10031, USA
Abstract:In the previous paper by Yu and Diab (2013), several sets of boundary integral equations are derived for general anisotropic materials and corresponding equations for materials with different classes of symmetry are deduced. The work presented herein implements two sets of boundary element schemes to numerically solve the stress field. The integration on the element that has the singular point of the kernel is bounded and can be evaluated analytically. Four benchmark elastic problems are solved numerically to show the advantage of the two schemes over the conventional boundary element formulation in eliminating the boundary layer effect. The one with the weaker singularity has better convergence and gives more accurate results. The presented formulation also provides a direct approach to solve for stress field in a finite solid body in the presence of dislocations. Combined with discrete dislocations dynamics, boundary value problems with dislocations in finite bodies can be solved. Two examples, bending of a single crystal beam and pure shearing of a polycrystalline solid, are simulated by discrete dislocation dynamics using the scheme that has the weaker singularity. The comparisons with the published results using the well-established superposition technique validate the proposed formulation and show its quick convergence.
Keywords:Boundary integral equations  Discrete dislocation plasticity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号