Combining light-harvesting and charge separation in a self-assembled artificial photosynthetic system based on perylenediimide chromophores |
| |
Authors: | Rybtchinski Boris Sinks Louise E Wasielewski Michael R |
| |
Affiliation: | Department of Chemistry and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, Evanston, Illinois 60208-3113, USA. |
| |
Abstract: | ![]() Self-assembly of robust perylenediimide chromophores is used to produce an artificial light-harvesting antenna structure that in turn induces self-assembly of a functional special pair that undergoes ultrafast, quantitative charge separation. The structure consists of four 1,7-(3',5'-di-tert-butylphenoxy)perylene-3,4:9,10-perylene-3,4:9,10-bis(carboximide) (PDI) molecules attached to a single 1,7-bis(pyrrolidin-1-yl)perylene-3,4:9,10-perylene-3,4:9,10-bis(carboximide) (5PDI) core, which self-assembles to form (5PDI-PDI4)2 in toluene. The system is characterized using both structural methods (NMR, SAXS, mass spectroscopy, and GPC) and photophysical methods (UV-vis, time-resolved fluorescence, and femtosecond transient absorption spectroscopy). Energy transfer from (PDI)2 to (5PDI)2 occurs with tau = 21 ps, followed by excited-state symmetry breaking of 1*(5PDI)2 to produce 5PDI*+-5PDI*- quantitatively with tau = 7 ps. The ion pair recombines with tau = 420 ps. Electron transfer occurs only in the dimeric system and does not occur in the disassembled monomer, thus mimicking both antenna and special pair function in photosynthesis. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|