首页 | 本学科首页   官方微博 | 高级检索  
     


Spatiotemporal dynamics in the coherence collapsed regime of semiconductor lasers with optical feedback
Authors:Masoller Cristina
Affiliation:Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay.
Abstract:This paper presents a spatiotemporal characterization of the dynamics of a single-mode semiconductor laser with optical feedback. I use the two-dimensional representation of a time-delayed system (where the delay time plays the role of a space variable) to represent the time evolution of the output intensity and the phase delay in the external cavity. For low feedback levels the laser output is generally periodic or quasiperiodic and with the 2D representation I obtain quasiperiodic patterns. For higher feedback levels the coherence collapsed regime arises, and in the 2D patterns the quasiperiodic structures break and "defects" appear. In this regime the patterns present features that resemble those of an extended spatiotemporally chaotic system. The 2D representation allows the recognition of two distinct types of transition to coherence collapse. As the feedback intensity grows the number of defects increases and the patterns become increasingly chaotic. As the delay time increases the number of defects in the patterns do not increase and there is a signature of the previous quasiperiodic structure that remains. The nature of the two transitions is understood by examining the behavior of various chaotic indicators (the field autocorrelation function, the Lyapunov spectrum, the fractal dimension, and the metric entropy) when the feedback intensity and the delay time vary. (c) 1997 American Institute of Physics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号