Brillouin scattering spectrum in photonic crystal fiber with a partially germanium-doped core |
| |
Authors: | Zou Lufan Bao Xiaoyi Chen Liang |
| |
Affiliation: | Fiber Optics Group, Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada. |
| |
Abstract: | ![]() The Brillouin scattering spectrum in a photonic crystal fiber (PCF) with a partially Ge-doped core is measured with a pump-probe technique at a wavelength of 1320 nm. One main peak and four subpeaks are observed. The main peak has a Lorentzian shape with the bandwidth deltanuB = 66 MHz. Its intensity is six times higher than that from a standard single-mode fiber measured under the same conditions, which is consistent with the ratio of (1/Aeff(PCF))/(1/Aeff(SMF)), where Aeff is the effective area of the fibers. The temperature coefficient for the main peak is 0.96 MHz/degrees C. We believe that the subpeaks are caused by an interaction between light-wave and guided modes of longitudinal acoustic waves in the graded-Ge-doped region, the silica region, and the microstructured cladding. An analysis of the guiding and antiguiding properties of the PCF for acoustic waves is presented. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|