1. School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, People’s Republic of China
Abstract:
A highly sensitive electrochemical sensor for determination of L-cysteine (CySH) is presented. It is based on vertically aligned multiwalled carbon nanotubes modified with Pt nanoparticles by magnetron sputtering deposition. The morphology of the nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy and energy-dispersive. The electrochemistry of CySH was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The mechanism for the electrochemical reaction of CySH at the modified electrode at different pH values is discussed. The electrode exhibits a higher electrocatalytic activity towards the oxidation of CySH than comparable other electrodes. It displays a linear dependence (R2?=?0.9980) on the concentration of CySH in the range between 1 and 500 μM and at an applied potential of +0.45 V, a remarkably low detection limit of 0.5 μM (S/N?=?3), and an outstandingly high sensitivity of 1.42?×?103 μA?mM?1?cm?2, which is the highest value ever reported. The electrode also is highly inert towards other amino acids, creatinine and urea. The sensor was applied to the determination of CySH in urine with satisfactory recovery, thus demonstrating its potential for practical applications.
Figure
Pt nanoparticles on carbon nanotubes by sputtering deposition show high performance for L-cysteine sensing