Forced convective heat transfer enhancement with perforated pin fins |
| |
Authors: | Swee-Boon Chin Ji-Jinn Foo Yin-Ling Lai Terry Kin-Keong Yong |
| |
Affiliation: | 1. Department of Mechanical Engineering, Sheffield University, Sheffield, S1 3JD, UK 2. School of Engineering, Monash University, 46150, Bandar Sunway, Malaysia 3. Faculty of Engineering and the Built Environment, SEGi University, 47810, Petaling Jaya, Malaysia
|
| |
Abstract: | ![]() Increasing miniaturization of high speed multi-functional electronics demands ever more stringent thermal management. The present work investigates experimentally and numerically the use of staggered perforated pin fins to enhance the rate of heat transfer in these devices. In particular, the effects of the number of perforations and the diameter of perforation on each pin are studied. The results show that the Nusselt number for the perforated pins is 45 % higher than that for the conventional solid pins and it increases with the number of perforation. Pressure drop with perforated pins is also reduced by 18 % when compared with that for solid pins. Perforations produce recirculations in the x–y as well as the x–z planes downstream of the pins which effectively increase convective heat transfer. However, thermal dissipation decreases significantly when the ratio of pin diameter to perforation diameter exceeds 0.375. This is due to both a reduction in the number of perforation per pin and the decrease in the axial heat conduction along the pin. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|