首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The influence of a magnetic field on the mechanical behavior of a fluid interface
Authors:R G Gontijo  S Malvar  Y D Sobral  F R Cunha
Institution:1.Departamento de Engenharia Mecanica - VORTEX,Universidade de Brasília,Brasília,Brazil;2.Departamento de Matemática,Universidade de Brasília,Brasília,Brazil
Abstract:This work focuses on a theoretical investigation of the shape and equilibrium height of a magnetic liquid–liquid interface formed between two vertical flat plates in response to vertical magnetic fields. The formulation is based on an extension of the so called Young–Laplace equation for an incompressible magnetic fluid forming a two-dimensional free interface. A first order dependence of the fluid susceptibility with respect to the magnetic field is considered. The formulation results in a hydrodynamic-magnetic coupled problem governed by a nonlinear second order differential equation that describes the liquid–liquid meniscus shape. According to this formulation, five relevant physical parameters are revealed in this fluid static problem. The standard gravitational Bond number, the contact angle and three new parameters related to magnetic effects in the present study: the magnetic Bond number, the magnetic susceptibility and its derivative with respect to the field. The nonlinear governing equation is integrated numerically using a fourth order Runge-Kutta method with a Newton–Raphson scheme, in order to accelerate the convergence of the solution. The influence of the relevant parameters on the rise and shape of the liquid–liquid interface is examined. The interface shape response in the presence of a magnetic field varying with characteristic wavenumbers is also explored. The numerical results are compared with asymptotic predictions also derived here for small values of the magnetic Bond number and constant susceptibility. A very good agreement is observed. In addition, all the parameters are varied in order to understand how the scales influence the meniscus shape. Finally, we discuss how to control the shape of the meniscus by applying a magnetic field.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号