首页 | 本学科首页   官方微博 | 高级检索  
     


An intramolecular ionic hydrogen bond stabilizes a cis amide bond rotamer of a ring-opened rapamycin-degradation product
Authors:Zhou Casey Chun  Stewart Kent D  Dhaon Madhup K
Affiliation:D-R418, Structural Chemistry, Global Pharmaceutical Research and Development, Abbott Laboratories, North Chicago, IL 60064-4000, USA. chun.zhou@abbott.com
Abstract:
Rapamycin (1), a macrolide immunosuppressant, undergoes degradation into ring-opened acid products 2 and 3 under physiologically relevant conditions. The unsaturated product (3) was isolated and studied in this work. Unlike 1, which has its amide primarily in a trans conformation in solution, 3 has both cis and trans conformations in approximately a 1:1 ratio in dimethyl sulfoxide (DMSO). The amount of cis rotamer was increased dramatically in the presence of an organic base such as triethylamine. The detailed NMR results indicate that the cis rotamer is stabilized through an intramolecular ionic hydrogen bond of the carboxylate anion with the tertiary alcohol as part of a nine-membered ring system. This hydrogen bond was characterized further in organic media and the trans-cis rotamer equilibria were used to estimate the relative bond strengths in several solvents. The additional stabilization arising from this ionic hydrogen bond in the cis rotamer was determined to be 1.4 kcal mol(-1) in DMSO-d6, 2.0 kcal mol(-1) in CD3CN and 1.1 kcal mol(-1) in CD3OD.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号