首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trapping phosphodiester-quinone methide adducts through in situ lactonization
Authors:Zhou Q  Turnbull K D
Institution:Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville 72701, USA.
Abstract:The goal of in situ modification of DNA via phosphodiester alkylation has led to our design of quinone methide derivatives capable of alkylating dialkyl phosphates. A series of catechol derivatives were investigated to trap the phosphodiester-quinone methide alkylation adduct through in situ lactonization. The catechol derivatives were uniquely capable of characterizable p-quinone methide formation for mechanistic clarity. These investigations revealed that with a highly reactive lactonization group (phenyl ester), lactonization competed with quinone methide formation. Lactone-forming groups of lower reactivity (methyl ester, n-propyl ester, and dimethyl amide) allowed quinone methide formation followed by phosphodiester alkylation; however, they were ineffective at in situ lactonization to drain the phosphodiester alkylation equilibrium to the desired phosphotriester product. The derivatives tethered with lactone-forming functionality of intermediate reactivity (chloro-, trichloro-, and trifluoroethyl esters), allowed quinone methide formation, phosphodiester alkylation, and in situ lactonization to efficiently afford the trapped phosphotriester adduct.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号