首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Distance-hereditary graphs and signpost systems
Authors:Ladislav Nebeský
Institution:Faculty of Philosophy & Arts, Charles University, Prague, nám. J. Palacha 2, 116 38 Praha 1, Czech Republic
Abstract:An ordered pair (U,R) is called a signpost system if U is a finite nonempty set, RU×U×U, and the following axioms hold for all u,v,wU: (1) if (u,v,w)∈R, then (v,u,u)∈R; (2) if (u,v,w)∈R, then (v,u,w)∉R; (3) if uv, then there exists tU such that (u,t,v)∈R. (If F is a (finite) connected graph with vertex set U and distance function d, then U together with the set of all ordered triples (u,v,w) of vertices in F such that d(u,v)=1 and d(v,w)=d(u,w)−1 is an example of a signpost system). If (U,R) is a signpost system and G is a graph, then G is called the underlying graph of (U,R) if V(G)=U and xyE(G) if and only if (x,y,y)∈R (for all x,yU). It is possible to say that a signpost system shows a way how to travel in its underlying graph. The following result is proved: Let (U,R) be a signpost system and let G denote the underlying graph of (U,R). Then G is connected and every induced path in G is a geodesic in G if and only if (U,R) satisfies axioms (4)-(8) stated in this paper; note that axioms (4)-(8)-similarly as axioms (1)-(3)-can be formulated in the language of the first-order logic.
Keywords:Distance-hereditary graph  Geodesic  Induced path  Signpost system
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号