Raman spectroscopic study of the multi‐anion uranyl mineral schroeckingerite |
| |
Authors: | Ray L. Frost,Jiř í Č ejka,Godwin A. Ayoko,Marilla J. Dickfos |
| |
Abstract: | Raman spectroscopy complemented with infrared (IR) spectroscopy has been used to study the mineral schroeckingerite. The mineral is a multi‐anion mineral and has (UO2)2+, (SO4)2− and (CO3)2− units in its structure, and bands attributed to these vibrating units are readily identified in the Raman spectra. Symmetric stretching modes at 815, 983 and 1092 cm−1 are assigned to (UO2)2+, (SO4)2− and (CO3)2− units, respectively. The antisymmetric stretching modes of (UO2)2+, (SO4)2− are not observed in the Raman spectra but may be readily observed in the IR spectrum at 898 and 1180 cm−1. The antisymmetric stretching mode of (CO3)2− is observed in the Raman spectrum at 1374 cm−1, as is also the ν4 (CO3)2− bending modes at 742 and 707 cm−1. No ν2 (CO3)2− bending modes are observed in the Raman spectrum of schroeckingerite. All the spectroscopic evidence points to a highly ordered structure of this mineral. Copyright © 2007 John Wiley & Sons, Ltd. |
| |
Keywords: | uranyl sulfate uranyl carbonate fluoride infrared and Raman spectroscopy |
|
|