首页 | 本学科首页   官方微博 | 高级检索  
     


Fuzzy weighted scaled coefficients in semi-parametric model
Authors:Jong-Wuu Wu  Jiahn-Bang Jang  Tzong-Ru Tsai
Affiliation:(1) Department of Statistics, Tamkang University, Tamsui, 25137 Taipei, Taiwan, R.O.C.;(2) Graduate School of Statistics, National Chengchi University, 64, 2nd Section, Chi-nan Rd., 11623 Taipei, Taiwan, R.O.C.
Abstract:
In general, the regressor variables are stochastic, Duan and Li (1987, J. Econometrics, 35, 25–35), Li and Duan (1989, Ann. Statist., 17, 1009–1052) have been shown that under very general design conditions, the least squares method can still be useful in estimating the scaled regression coefficients of the semi-parametric model Yi=Q1(agr+betaXi;epsivi, i+ 1,2,...,n. Here agr is a constant, beta is a 1×p row vector, Xi is a p×1 column vector of explanatory variables, epsivi is an unobserved random error and Q1 is an arbitrary unknown function. When the data set (Xi, Yi),i=1, 2, ..., n, contains one or several outliers, the least squares method can not provide a consistent estimator of the scaled coefficients beta. Therefore, we suggest the ldquofuzzyrdquo weighted least squares method to estimate the scaled coefficients beta for the data set with one or several outliers. It will be shown that the proposed ldquofuzzyrdquo weighted least squares estimators are % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaakaaabaGaamOBaaWcbeaaaaa!3D3C![sqrt n ] and asymptotically normal under very general design condition. Consistent measurement of the precision for the estimator is also given. Moreover, a limited Monte Carlo simulation and an example are used to study the practical performance of the procedures.This research partially supported by the National Science Council, R.O.C.
Keywords:Least squares estimator  semi-parametric model  outlier  asymptotic normality  fuzzy weighted least squares estimator  Monte Carlo simulation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号