首页 | 本学科首页   官方微博 | 高级检索  
     


Weyl's association,Wigner's function and affine geometry
Authors:N.L. Balazs
Affiliation:Department of Physics State University of New York at Stony Brook, Stony Brook, L.I., N.Y. 11794, USA
Abstract:According to Weyl one may associate a function with a dynamical operator; these functions depend on the parameters p and q and can be displayed in a p, q manifold, the W space. In the classical limit the W space becomes the phase space parametrised by the canonical variables. The function associated in this manner with the density operator is Wigner's function. It turns out that if Wigner's function is a delta function it cannot represent the density operator of a physically realisable state unless the argument of the delta-function is linear in the parameters a and q. In all other cases Wigner's function associated with a physically realisable state has a finite width, proportional to h23. Consequently straightness (linear combination of p and q) has a fundamental significance in the W space. Since this property is preserved under linear inhomogeneous transformations the W space will have a geometry generated by these transformations, the affine geometry of Euler, Moebius and Blaschke. In the present note we show how this comes about, how it simplifies the semiclassical approximations of Wigner's function, and makes one understand how in the classical limit this geometry is lost, allowing to be replaced by the geometry of canonical transformations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号