首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs
Authors:Abdellah Chkifa  Albert Cohen  Christoph Schwab
Institution:1. Laboratoire Jacques-Louis Lions, UPMC Univ Paris 06, UMR 7598, 75005, Paris, France
2. Laboratoire Jacques-Louis Lions, CNRS, UMR 7598, 75005, Paris, France
3. Seminar for Applied Mathematics, ETH Zürich, 8092, Zürich, Switzerland
Abstract:We consider the problem of Lagrange polynomial interpolation in high or countably infinite dimension, motivated by the fast computation of solutions to partial differential equations (PDEs) depending on a possibly large number of parameters which result from the application of generalised polynomial chaos discretisations to random and stochastic PDEs. In such applications there is a substantial advantage in considering polynomial spaces that are sparse and anisotropic with respect to the different parametric variables. In an adaptive context, the polynomial space is enriched at different stages of the computation. In this paper, we study an interpolation technique in which the sample set is incremented as the polynomial dimension increases, leading therefore to a minimal amount of PDE solving. This construction is based on the standard principle of tensorisation of a one-dimensional interpolation scheme and sparsification. We derive bounds on the Lebesgue constants for this interpolation process in terms of their univariate counterpart. For a class of model elliptic parametric PDE’s, we have shown in Chkifa et al. (Modél. Math. Anal. Numér. 47(1):253–280, 2013) that certain polynomial approximations based on Taylor expansions converge in terms of the polynomial dimension with an algebraic rate that is robust with respect to the parametric dimension. We show that this rate is preserved when using our interpolation algorithm. We also propose a greedy algorithm for the adaptive selection of the polynomial spaces based on our interpolation scheme, and illustrate its performance both on scalar valued functions and on parametric elliptic PDE’s.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号