首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions
Authors:Love J Christopher  Urbach Adam R  Prentiss Mara G  Whitesides George M
Institution:Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
Abstract:Metallic rods with submicron diameters that contain disklike ferromagnetic sections self-assemble into highly stable, hexagonally close-packed arrays of rods. The rods were fabricated by electrodeposition in porous alumina membranes and comprised alternating sections of gold and nickel. The thicknesses of the ferromagnetic nickel sections were approximately one-half the diameter of the rods (400 nm); this geometry orients the "easy" axis of magnetization perpendicular to the long axis of the rod. After magnetization of the rods with a rare-earth magnet, followed by sonication of the suspension, the rods spontaneously assembled into three-dimensional (3D) bundles that, on average, contained 15-30 rods. A macroscopic model of the rods suggests that the most stable orientation of the magnetic dipoles for rods in a defect-free, hexagonally close-packed arrangement is in concentric rings with the dipoles oriented head-to-tail. This configuration minimizes the energy of the bundle and does not generate a net dipole for the structure. This work provides a simple demonstration that magnetic interactions between ferromagnetic objects can direct and stabilize the formation of ordered, 3D structures by self-assembly.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号