Affiliation: | 1. Research Unit 13ES63, Applied Chemistry and Environment, Faculty of Sciences of Monastir, University of Monastir, Monastir-5000, Tunisia;2. Department of Life Sciences, Laboratory of Botany and plant Ecology, Faculty of Sciences of Bizerta, University of Carthage, Bizerta, Tunisia Department Pharmaceutical Sciences “A”, Laboratory of Botany, Cryptogamy and Plant Biology, Faculty of Pharmacy of Monastir BP 207, University of Monastir, Monastir, Tunisia Department of Silvo-Pastoral Resources, Laboratory of Silvo-Pastoral Resources, Silvo-Pastoral Institute of Tabarka, University of Jendouba, Tabarka, Tunisia;3. Mountain Botanical Garden DSC RAS, Makhachkala, Russia Institute of Physics DSC RAS, Makhachkala, Russia |
Abstract: | Chemists and industrialists are continuously attempting to develop greener and more environmentally benign chemical processes to extract essential oils and bioactive metabolites of high purity, finding various applications in cosmetics, detergents, nutraceuticals and pharmaceuticals. An increase preferenced for natural products over synthetic ones has made supercritical fluid technology a primary alternative for the generation of high-value bioactive ingredients. This effective technique requires only moderate temperatures, eliminates clean-up steps and avoids the use of harmful organic solvents. In this context, our study was focused on the chemical analysis of Calamintha nepeta subsp. nepeta aromatic extracts obtained with supercritical carbon dioxide. The effect of different operating conditions on the capacity of the lipophilic solvent to extract the targeted volatile components was also studied. The process was carried out at a fairly low constant temperature of 40°C, and with varying the pressure from 90 to 300 bar. The chemical composition of the extracts was analyzed by gas chromatography–mass spectroscopy. The results showed that the composition pattern, the concentrations of individual components and the quality of the extractable analytes were affected by pressure increase. The extraction yields varied from 0.73 to 1.21 wt% at 90 and 300 bar, respectively. |