首页 | 本学科首页   官方微博 | 高级检索  
     

基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器
引用本文:郑加金,王雅如,余柯涵,徐翔星,盛雪曦,胡二涛,韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器[J]. 物理学报, 2018, 67(11): 118502-118502. DOI: 10.7498/aps.67.20180129
作者姓名:郑加金  王雅如  余柯涵  徐翔星  盛雪曦  胡二涛  韦玮
作者单位:1. 南京邮电大学电子与光学工程学院, 南京 210023;2. 南京师范大学化学与材料科学学院, 南京 210023;3. 中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安 710119
基金项目:国家自然科学基金(批准号:61504064,51572120)、中国科学院西安光学密机械研究所瞬态光学与光子技术国家重点实验室开放基金(批准号:SKLST201606)、江苏省自然科学基金(批准号:BK20150847)和南京邮电大学国自基金孵化基金(批准号:NY215143)资助的课题.
摘    要:以等离子增强化学气相沉积法制备的石墨烯作为导电沟道材料,将其与无机CsPbI_3钙钛矿量子点结合,设计并制备了石墨烯-钙钛矿量子点场效应晶体管光电探测器.研究和分析了石墨烯作为场效应晶体管的电学特性及其与钙钛矿量子点结合作为光电探测器的光电特性.结果表明,石墨烯在场效应晶体管中表现出良好的电学性质,其与钙钛矿量子点的结合对波长为400 nm的光辐射具有明显的光响应,在光强为12μW时器件光生电流最大为64μA,响应率达6.4 A·W~(-1),对应的光电导增益和探测率分别为3.7×10~4,6×10~7Jones(1 Jones=1 cm·Hz~(1/2)·W~(-1)).

关 键 词:场效应晶体管  石墨烯  钙钛矿量子点  光电探测器
收稿时间:2018-01-18

Field effect transistor photodetector based on graphene and perovskite quantum dots
Zheng Jia-Jin,Wang Ya-Ru,Yu Ke-Han,Xu Xiang-Xing,Sheng Xue-Xi,Hu Er-Tao,Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots[J]. Acta Physica Sinica, 2018, 67(11): 118502-118502. DOI: 10.7498/aps.67.20180129
Authors:Zheng Jia-Jin  Wang Ya-Ru  Yu Ke-Han  Xu Xiang-Xing  Sheng Xue-Xi  Hu Er-Tao  Wei Wei
Affiliation:1. College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;2. College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;3. State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi'an 710119, China
Abstract:Graphene is an attractive optoelectronic material for various optoelectronic devices, especially in the field of photoelectric detection due to its high carrier mobility and fast response time. However, the relatively low light absorption cross-section and fast electron-hole recombination rate can lead to rapid exciton annihilation and small light gain, which restrict the commercial applications of pure graphene-based photodetector. The perovskite has attracted much attention because of its high photoelectric conversion efficiency in the field of solar cells. The perovskite has the advantages of long carrier diffusion distance and high optical absorption coefficient, which can effectively make up for the shortcomings of pure graphene-based field-effect transistor. In this work, a field-effect transistor photodetector is demonstrated with the combination of graphene and halide perovskite quantum dots (CsPbI3) serving as conductive channel materials. The graphene is prepared by plasma enhanced chemical vapor deposition, and the quantum dots are CsPbI3 perovskite. The electrical properties of graphene and pure graphene-based field-effect transistor are detected and analyzed by using the Raman spectrum. The results show that the graphene has good intrinsic electrical properties. Unlike previous report in which bulk perovskite was used, the perovskite quantum dot field-effect transistor photodetector has an obvious light response to 400 nm signal light, and shows the excellent photoelectrical performance. Under the illumination of 400 nm light, the signal light could be detected steadily and repeatedly by the graphene-perovskite quantum dot photodetector and converted into photocurrent. The photocurrent of the photodetector has a rapid rise, and the maximum value can reach 64 μA at a light power of 12 μW. The corresponding responsivity is 6.4 A·W-1, which is two orders of magnitude higher than that of the general single graphene photodetector (10-2 A·W-1), and it is also higher than that of perovskite-based photodetector (0.4 A·W-1). In addition, the photoconductive gain and detectivity arrive at 3.7×104 and 6×107 Jones (1 Jones=1 cm·Hz1/2·W-1), respectively. The results of this study demonstrate that the graphene-perovskite quantum dot photodetector can be a promising candidate for commercial UV light detectors.
Keywords:field effect transistor  graphene  perovskite quantum dots  photodetector
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号