首页 | 本学科首页   官方微博 | 高级检索  
     检索      

声子角动量与手性声子
引用本文:俞杭,徐锡方,牛谦,张力发.声子角动量与手性声子[J].物理学报,2018,67(7):76302-076302.
作者姓名:俞杭  徐锡方  牛谦  张力发
作者单位:1. 南京师范大学物理科学与技术学院, 南京 210000;2. 德克萨斯大学物理系, 奥斯汀, 德克萨斯 78712, 美国
基金项目:国家自然科学基金(批准号:11574154)资助的课题.
摘    要:在经典的物理学理论中,声子广泛地被认为是线极化的、不具有角动量的.最近的理论研究发现,在具有自旋声子相互作用的磁性体系(时间反演对称性破缺)中,声子可以携带非零的角动量,在零温时声子除了具有零点能以外还带有零点角动量;非零的声子角动量将会修正通过爱因斯坦-德哈斯效应测量的回磁比.在非磁性材料中,总的声子角动量为零,但是在空间反演对称性破缺的六角晶格体系中,其倒格子空间的高对称点上声子具有角动量,并具有确定的手性;三重旋转对称操作给予声子量子化的赝角动量,赝角动量的守恒将决定电子谷间散射的选择定则;此外还理论预测了谷声子霍尔效应.

关 键 词:声子角动量  手性声子  赝角动量守恒  谷声子霍尔效应
收稿时间:2017-11-09

Phonon angular momentum and chiral phonons
Yu Hang,Xu Xi-Fang,Niu Qian,Zhang Li-Fa.Phonon angular momentum and chiral phonons[J].Acta Physica Sinica,2018,67(7):76302-076302.
Authors:Yu Hang  Xu Xi-Fang  Niu Qian  Zhang Li-Fa
Institution:1. School of Physics and Technology, Nanjing Normal University, Nanjing 210000, China;2. Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
Abstract:In traditional physics, phonon is widely regarded as being linearly polarized, which means that phonon carries zero angular momentum. Thus the angular momentum of lattice related to mechanical rotation only reflects the lattice rigid-body motion. Recently, in a magnetic system with time reversal symmetry broken by spin-phonon interaction, one found that the phonon angular momentum is nonzero and an odd function of magnetization. At zero temperature, phonon was reported to have a zero-point angular momentum and zero-point energy. Thus the gyromagnetic ratio obtained through the Einstein-de Haas effect needs correcting by considering the nonzero phonon angular momentum. As is well known, if phonon has nonzero angular momentum, which means that phonon can have rotation, it can be right-handed or left-handed, that is, the phonon is chiral. Actually, we can define the polarization of phonon to represent the phonon chirality, which comes from the circular vibration of sublattices. When the phonon polarization is larger (less) than zero, the phonon is right (left)-handed. In non-magnetic honeycomb AB lattices, with inversion symmetrybrocken, the chiral phonons are found to be of valley contrasting circular polarization and concentrated in Brillouin-zone corners. At valleys, there is a three-fold rotational symmetry endowing phonons with quantized pseudo angular momentum. Then conversation of pseudo angular momentum, which determines the selection rules in phonon-involved intervalley scattering of electrons, must be satisfied. Chiral valley phonons can be measured by polarized infrared absorption or emission. In addition, since the phonon Berry curvature is reported to be nonzero at valley, it can distort phonon transport under a strain gradient, which can act as an effective magnetic field. Thus, a valley phonon Hall effect is theoretically predicted, which is probably a method of measuring chiral valley phonons. In consideration of phonons angular momentum and chiral phonons, photon helicity changed by phonons at Gamma point will be explained reasonably. In conclusion, chiral phonons are present in systems that break time reversal or spatial inversion symmetries. In a magnetic system, where time reversal symmetry is broken, phonons generally carry a nonzero angular momentum, which can influence the classic Einstein-de Haas effect. In a nonequilibrium system, the phonon Hall effect can be observed due to the chiral phonons. In a non-magnetic crystal, with inversion symmetry brocken, phonons in the Brillouin-zone center and corners are chiral and have a quantized pseudo angular momentum, providing an alternative to valleytronics in insulators. We believe that the findings of the phonon angular momentum and the chiral phonons together with phonon pseudoangular momentum, selection rules, and valley phonon Hall effect will lead to the relevant exploration and new development of phonon related subject in condensed matter physics.
Keywords:phonon angular momentum  chiral phonons  conversation of pseudoangular momentum  valley phonon Hall effect
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号