首页 | 本学科首页   官方微博 | 高级检索  
     检索      

轴向多光阱微粒捕获与实时直接观测技术
引用本文:王玥,梁言生,严绍辉,曹志良,蔡亚楠,张艳,姚保利,雷铭.轴向多光阱微粒捕获与实时直接观测技术[J].物理学报,2018,67(13):138701-138701.
作者姓名:王玥  梁言生  严绍辉  曹志良  蔡亚楠  张艳  姚保利  雷铭
作者单位:1. 中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安 710119; 2. 中国科学院大学, 北京 100049
基金项目:国家自然科学基金(批准号:61522511,81427802,11474352)和中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-JSC005)资助的课题.
摘    要:传统的光镊技术使用单个物镜同时进行光学捕获与显微成像,使得捕获与成像区域被限制在物镜焦平面附近,无法同时观察到沿光轴方向(即Z向)捕获的多个微粒.本文提出一种轴平面(XZ平面)GerchbergSaxton迭代算法来产生沿轴向分布的多光阱阵列,将轴平面成像技术与光镊结合,实现了沿轴向对二氧化硅微球的多光阱同时捕获与实时观测.通过视频分析法测量了多个二氧化硅微球在轴向光镊阵列中的布朗运动,并标定了光阱刚度.本文提出的轴向多光阱微粒捕获与实时观测技术为光学微操纵提供了一个新的观测视角和操纵方法,为生物医学、物理学等相关领域研究提供了一种新的技术手段.

关 键 词:光镊  光阱刚度  轴平面成像  Gerchberg-Saxton算法
收稿时间:2018-03-16

Axial multi-particle trapping and real-time direct observation
Wang Yue,Liang Yan-Sheng,Yan Shao-Hui,Cao Zhi-Liang,Cai Ya-Nan,Zhang Yan,Yao Bao-Li,Lei Ming.Axial multi-particle trapping and real-time direct observation[J].Acta Physica Sinica,2018,67(13):138701-138701.
Authors:Wang Yue  Liang Yan-Sheng  Yan Shao-Hui  Cao Zhi-Liang  Cai Ya-Nan  Zhang Yan  Yao Bao-Li  Lei Ming
Institution:1. State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:The optical tweezers with the special advantages of non-mechanical contact and the accurate measurement of positions of particles, are a powerful manipulating tool in numerous applications such as in colloidal physics and life science. However, the standard optical tweezers system uses a single objective lens for both trapping and imaging. As a result, the trapping and imaging regions are confined to the volume near the focal plane of the objective lens, making it difficult to track the trapped particles arranged in the axial direction. Therefore, multiple trapping along axial direction remains a challenge. The three-dimensional imaging technology can realize the monitoring of the axial plane, but neither the laser scanning microscopy nor the wide-field imaging technology can meet the requirement of the real-time imaging. To address this issue, we propose a modified axial-plane Gerchberg-Saxton (GS) iterative algorithm based on the Fourier transform in the axial plane. Compared with the direct algorithm such as the Fresnel lens method, the modified axial-plane GS iterative algorithm has a higher modulation efficiency, and the generated axial distribution has a sharper intensity. In theory, the traps generated each have an ideal Gaussian intensity distribution independently, which is proved by the simulation of reconstructed field. With such an iterative algorithm, we can directly create multiple point-trap array arranged along the axial direction. We also develop an axial-imaging scheme. In this scheme, the particles are trapped and a right-angled silver-coated 45° reflector is used to realize axial-plane imaging. The scheme is verified by imaging silica particles in an axial plane and a lateral plane simultaneously. Furthermore, we combine the axial-plane imaging technique with holographic optical tweezers, and demonstrate the simultaneous optical trapping in 2×2 trap array and the monitoring of multiple silica particles in the axial plane. The trap stiffness of traps array in axial plane is calibrated by measuring the Brownian motion of the trapped particles in the axial trap array with digital video microscopy. The proposed technique provides a new perspective for optical micromanipulation, and enriches the functionality of optical micromanipulation technology, and thus it will have many applications in biological and physical research.
Keywords:optical tweezers  trap stiffness  axial plane imaging  Gerchberg-Saxton algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号