首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Unitarily Inequivalent Representations in Algebraic Quantum Theory
Authors:Email author" target="_blank">Frederick?M?KronzEmail author  Tracy?A?Lupher
Institution:(1) Department of Philosophy, The University of Texas at Austin, 1 University Station, Austin, Texas;(2) Department of History and Philosophy of Science, The University of Pittsburgh, Main Campus, Pittsburgh, Pennsylvania, 15260;(3) Department of Philosophy, The University of Texas at Austin, 1 University Station, Austin, Texas
Abstract:It has been maintained that the physical content of a model of a system is completely contained in the C∗-algebra of quasi-local observables $${\cal A}$$ that is associated with the system. The reason given for this is that the unitarily inequivalent representations of $${\cal A}$$ are physically equivalent. But, this view is dubious for at least two reasons. First, it is not clear why the physical content does not extend to the elements of the von Neumann algebras that are generated by representations of $${\cal A}$$ . It is shown here that although the unitarily inequivalent representations of $${\cal A}$$ are physically equivalent, the extended representations are not. Second, this view detracts from special global features of physical systems such as temperature and chemical potential by effectively relegating them to the status of fixed parameters. It is desirable to characterize such observables theoretically as elements of the algebra that is associated with a system rather than as parameters, and thereby give a uniform treatment to all observables. This can be accomplished by going to larger algebras. One such algebra is the universal enveloping von Neumann algebra, which is generated by the universal representation of $${\cal A}$$ ; another is the direct integral of factor representations that are associated with the set of values of the global features. Placing interpretive significance on the von Neumann algebras mentioned earlier sheds light on the significance of unitarily inequivalent representations of $${\cal A}$$ , and it serves to show the limitations of the notion of physical equivalence.
Keywords:C  -algebra  inequivalent representations  von Neumann algebras  algebraic field theory  physical equivalence  foundations of physics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号