Using store level scanner data to improve category management decisions: Developing positioning maps |
| |
Authors: | Ó scar Gonzá lez-Benito,Marí a Pilar Martí nez-Ruiz,Alejandro Mollá -Descals |
| |
Affiliation: | 1. Departamento de Administración y Economía de la Empresa, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain;2. Facultad de Ciencias Sociales, Universidad de Castilla-La Mancha, Avenida de los Alfares, 44. 16002 Cuenca, Spain;3. Departamento de Comercialización e Investigación de Mercados, Universidad de Valencia, Facultad de Economía, Avenida de los Naranjos, s/n. 46022 Valencia, Spain |
| |
Abstract: | This paper provides evidence of the usefulness of aggregated point-of-sale scanner data to infer the positioning of competing brands, providing valuable information for category management and hence facilitating decision making. Specifically, the authors propose a methodology to study the internal market structure based on market share models with latent heterogeneity when only macro-level time series data (not individual choices) are available. The proposed approach assumes a multidimensional decomposition, latent in the preference structure that is implicit to these types of models. By empirically applying this approach, the authors (1) simultaneously identify both latent dimensions of competing brands and latent segments with different brand preferences, (2) explain the competitive positioning of brands without using disaggregated consumer panel data, and (3) achieve greater predictive performance. The findings offer insights to academics and practitioners interested in improving the practice of category management. |
| |
Keywords: | Marketing Management Decision making Market response models Internal analysis of the market structure Positioning maps |
本文献已被 ScienceDirect 等数据库收录! |
|