首页 | 本学科首页   官方微博 | 高级检索  
     


Fourier and Hermite series estimates of regression functions
Authors:Wlodzimier Greblicki  Miroslaw Pawlak
Affiliation:(1) Institute of Engineering Cybernetics, Technical University of Wroclaw, Wroclaw, Poland;(2) Concordia University, montreal, Canada
Abstract:Summary In the paper we estimate a regressionm(x)=E {Y|X=x} from a sequence of independent observations (X 1,Y 1),…, (X n, Yn) of a pair (X, Y) of random variables. We examine an estimate of a type 
$${{hat mleft( x right) = sumlimits_{j = 1}^n {Y_{jvarphi N} } left( {x,X_j } right)} mathord{left/ {vphantom {{hat mleft( x right) = sumlimits_{j = 1}^n {Y_{jvarphi N} } left( {x,X_j } right)} {sumlimits_{j = 1}^n {varphi _N } left( {x,X_j } right)}}} right. kern-nulldelimiterspace} {sumlimits_{j = 1}^n {varphi _N } left( {x,X_j } right)}}$$
, whereN depends onn andϕ N is Dirichlet kernel and the kernel associated with the hermite series. Assuming, that E|Y|<∞ and |Y|≦γ≦∞, we give condition for 
$$hat mleft( x right)$$
to converge tom(x) at almost allx, provided thatX has a density. if the regression hass derivatives, then 
$$hat mleft( x right)$$
converges tom(x) as rapidly asO(nC−(2s−1)/4s) in probability andO(n −(2s−1)/4s logn) almost completely.
Keywords:Regression function  Fourier series  Hermite series  nonparameteric estimate
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号