Remote fiber sensor based on cascaded Fourier domain mode-locked laser |
| |
Authors: | Byoung Chang Lee |
| |
Affiliation: | Department of Physics, Chungnam National University, Daejeon, 305-764, Republic of Korea |
| |
Abstract: | We propose a high-speed remote fiber Bragg grating (FBG) sensor interrogation system based on a 1.3-μm cascaded Fourier-domain mode-locked (FDML) laser. It consists of multiple FBGs connected to an optical circulator in the laser cavity. The cascaded FDML laser with these multiple FBGs is operational when the scanning frequency of the fiber Fabry-Perot tunable filter matches the fundamental frequency of the laser cavity. Each FBG provides a separate laser cavity for the FDML laser. The scanning frequencies of each laser cavity are 30.5314, 31.5393, 32.7108, and 33.8023 kHz. Using the cascaded FDML laser, we measure the performance of the long-distance static strain FBG sensor interrogation system in both the time and spectral domains. The slope coefficients of the measured relative wavelength difference and the relative time delay from the static strain are found to be 0.95 pm/μstrain and 0.15 ns/μstrain, respectively. We also demonstrate the dynamic response of the interrogation system with 80-Hz modulation strain using the cascaded FDML laser. Thus, an FBG sensor interrogation system for high-speed and high-sensitivity long-distance monitoring systems can be realized using a cascaded FDML laser. |
| |
Keywords: | Wavelength swept laser Fiber Bragg grating Sensor interrogation Fabry-Perot tunable filter |
本文献已被 ScienceDirect 等数据库收录! |
|